
APPENDIX E

Secure Coding Practices Policy

The Rhode Island Department of State (RIDOS) has adopted secure coding practices modeled
after the Open Web Application Security Project (OWASP). These practices are
technology/platform diagnostic guidelines to be integrated into the software development life
cycle. Implementing these practices will mitigate the most common software vulnerabilities
and aide in deploying secure software. All RIDOS employees and Vendors must adhere to these
practices as well as implement application security code scanning when engaging in
software/application development during the entire Software Development Life Cycle (SDLC).

Secure Coding Standards
a. Input Validation:

i. Conduct all data validation on a trusted system (e.g., The server)
ii. Identify all data sources and classify them as trusted and untrusted. Validate all

data from untrusted sources (e.g., Databases, file streams, etc.)
iii. Create a centralized input validation routine for the application
iv. Specify proper character sets, such as UTF-8, for all sources of input
v. Encode data to a common character set before validating (Canonicalize)

vi. All validation failures result in input rejection
vii. Determine if the system supports UTF-8 extended character sets and if so,

validate after UTF-8 decoding is completed
viii. Validate all client provided data before processing, including all parameters,

URLs and HTTP header content (e.g. Cookie names and values). Be sure to
include automated post backs from JavaScript, Flash or other embedded code

ix. Verify that header values in both requests and responses contain only ASCII
characters

x. Validate data from redirects (An attacker may submit malicious content directly
to the target of the redirect, thus circumventing application logic and any
validation performed before the redirect)

xi. Validate for expected data types
xii. Validate data range

xiii. Validate data length
xiv. Validate all input against a "white" list of allowed characters, whenever possible
xv. If any potentially hazardous characters must be allowed as input, be sure that

you implement additional controls like output encoding, secure task specific
APIs and accounting for the utilization of that data throughout the application.
Examples of common hazardous characters include:
< > " ' % () & + \ \' \"

xvi. If your standard validation routine cannot address the following inputs, then
they should be checked discretely

1. Check for null bytes (%00)
2. Check for new line characters (%0d, %0a, \r, \n)
3. Check for “dot-dot-slash" (../ or ..\) path alterations characters. In cases

where UTF-8 extended character set encoding is supported, address
alternate representation like: %c0%ae%c0%ae/

(Utilize canonicalization to address double encoding or other forms of obfuscation
attacks)

b. Output Encoding:

i. Conduct all encoding on a trusted system (e.g., The server)
ii. Utilize a standard, tested routine for each type of outbound encoding

iii. Contextually output encode all data returned to the client that originated
outside the application's trust boundary. HTML entity is one example, but does
not work in all cases is one example, but does not work in all cases

iv. Encode all characters unless they are known to be safe for the intended
interpreter

v. Contextually sanitize all output of un-trusted data to queries for SQL, XML, and
LDAP

vi. Sanitize all output of untrusted data to operating system commands

c. Authentication and Password Management:
i. Require authentication for all pages and resources, except those specifically

intended to be public
ii. All authentication controls must be enforced on a trusted system (e.g., The

server)
iii. Establish and utilize standard, tested, authentication services whenever possible
iv. Use a centralized implementation for all authentication controls, including

libraries that call external authentication services
v. Segregate authentication logic from the resource being requested and use

redirection to and from the centralized authentication control
vi. All authentication controls must fail securely

vii. All administrative and account management functions must be at least as secure
as the primary authentication mechanism

viii. If your application manages a credential store, it ought to ensure that only
cryptographically strong one-way salted hashes of passwords are stored and
that the table/file that stores the passwords and keys is write-able only by the
application (Do not use the MD5 algorithm if it can be avoided)

ix. Password hashing must be implemented on a trusted system (e.g., The server).
x. Validate the authentication data only on completion of all data input, especially

for sequential authentication implementations
xi. Authentication failure responses do not indicate which part of the

authentication data was incorrect. For example, instead of "Invalid username"
or "Invalid password", just use "Invalid username and/or password" for both.
Error responses must be truly identical in both display and source code

xii. Utilize authentication for connections to external systems that involve sensitive
information or functions

xiii. Authentication credentials for accessing services external to the application are
encrypted and stored in a protected location on a trusted system (e.g., The
server). The source code is NOT a secure location

xiv. Use only HTTP POST requests to transmit authentication credentials
xv. Only send non-temporary passwords over an encrypted connection or as

encrypted data, such as in an encrypted email. Temporary passwords associated
with email resets may be an exception

xvi. Enforce password complexity requirements established by policy or regulation.
Authentication credentials should be sufficient to withstand attacks that are
typical of the threats in the deployed environment. (e.g., requiring the use of
alphabetic as well as numeric and/or special characters)

xvii. Enforce password length requirements established by policy or regulation. Eight
characters is commonly used, but 16 is better or consider the use of multi-word
pass phrases

xviii. Password entry must be obscured on the user's screen. (e.g., on web forms use
the input type "password")

xix. Enforce account disabling after an established number of invalid login attempts
(e.g., five attempts are common). The account must be disabled for a period of
time sufficient to discourage brute force guessing of credentials, but not so long
as to allow for a denial-of-service attack to be performed

xx. Password reset and changing operations require the same level of controls as
account creation and authentication.

xxi. Password reset questions ought to support sufficiently random answers. (e.g.,
"favorite book" is a bad question because “The Bible” is a very common answer)

xxii. If using email-based resets, only send email to a pre-registered address with a
temporary link/password

xxiii. Temporary passwords and links must have a short expiration time
xxiv. Enforce the changing of temporary passwords on the next use
xxv. Notify users when a password reset occurs

xxvi. Prevent password re-use
xxvii. Passwords should be at least one day old before they can be changed, to

prevent attacks on password re-use
xxviii. Enforce password changes based on requirements established in policy or

regulation. Critical systems may require more frequent changes. The time
between resets must be administratively controlled

xxix. Disable "remember me" functionality for password fields
xxx. The last use (successful or unsuccessful) of a user account is reported to the

user at their next successful login
xxxi. Implement monitoring to identify attacks against multiple user accounts,

utilizing the same password. This attack pattern is used to bypass standard
lockouts, when user IDs can be harvested or guessed

xxxii. Change all vendor-supplied default passwords and user IDs or disable the
associated accounts

xxxiii. Re-authenticate users prior to performing critical operations
xxxiv. Use Multi-Factor Authentication for highly sensitive or high value transactional

accounts
xxxv. If using third party code for authentication, inspect the code carefully to ensure

it is not affected by any malicious code

d. Session Management:
i. Use the server or framework’s session management controls. The application

should only recognize these session identifiers as valid
ii. Session identifier creation must always be done on a trusted system (e.g., The

server)
iii. Session management controls must use well vetted algorithms that ensure

sufficiently random session identifiers
iv. Set the domain and path for cookies containing authenticated session identifiers

to an appropriately restricted value for the site
v. Logout functionality fully terminates the associated session or connection

vi. Logout functionality is available from all pages protected by authorization
vii. Establish a session inactivity timeout that is as short as possible, based on

balancing risk and business functional requirements. In most cases it should be
no more than several hours

viii. Disallow persistent logins and enforce periodic session terminations, even when
the session is active. Especially for applications supporting rich network
connections or connecting to critical systems. Termination times should support
business requirements and the user will receive sufficient notification to
mitigate negative impacts

ix. If a session was established before login, close that session and establish a new
session after a successful login

x. Generate a new session identifier on any re-authentication
xi. Do not allow concurrent logins with the same user ID

xii. Do not expose session identifiers in URLs, error messages or logs. Session
identifiers should only be in the HTTP cookie header. For example, do not pass
session identifiers as GET parameters

xiii. Protect server-side session data from unauthorized access, by other users of the
server, by implementing appropriate access controls on the server

xiv. Generate a new session identifier and deactivate the old one periodically (This
can mitigate certain session hijacking scenarios where the original identifier was
compromised)

xv. Generate a new session identifier if the connection security changes from HTTP
to HTTPS, as can occur during authentication. Within an application, it is
recommended to consistently utilize HTTPS rather than switching between HTTP
to HTTPS.

xvi. Supplement standard session management for sensitive server-side operations,
like account management, by utilizing per-session strong random tokens or
parameters. These methods can be used to prevent Cross Site Request Forgery
attacks.

xvii. Supplement standard session management for highly sensitive or critical
operations by utilizing per-request, as opposed to per-session, strong random
tokens or parameters

xviii. Set the "secure" attribute for cookies transmitted over an TLS connection
xix. Set cookies with the HTTP Only attribute, unless you specifically require client-

side scripts within your application to read or set a cookie's value

e. Access Control:
i. Use only trusted system objects, e.g. server-side session objects, for making

access authorization decisions
ii. Use a single site-wide component to check access authorization, including

libraries that call external authorization services
iii. Access controls must fail securely
iv. Deny all access if the application cannot access its security configuration

information
v. Enforce authorization controls on every request, including those made by

server-side scripts, "includes" and requests from rich client-side technologies
like AJAX and Flash

vi. Segregate privileged logic from other application code
vii. Restrict access to files or other resources, including those outside the

application's direct control, to only authorized users
viii. Restrict access to protected URLs to only authorized users

ix. Restrict access to protected functions to only authorized users
x. Restrict direct object references to only authorized users

xi. Restrict access to services to only authorized users
xii. Restrict access to application data to only authorized users

xiii. Restrict access to user and data attributes and policy information used by access
controls

xiv. Restrict access security-relevant configuration information to only authorized
users

xv. Server-side implementation and presentation layer representations of access
control rules must match

xvi. If state data must be stored on the client, use encryption and integrity checking
on the server side to catch state tampering.

xvii. Enforce application logic flows to comply with business rules
xviii. Limit the number of transactions a single user or device can perform in a given

period of time. The transactions/time should be above the actual business
requirement, but low enough to deter automated attacks

xix. Use the "referrer" header as a supplemental check only, it can never be the sole
authorization check, as it is can be spoofed

xx. If long authenticated sessions are allowed, periodically re-validate a user’s
authorization to ensure that their privileges have not changed and if they have,
log the user out and force them to re-authenticate

xxi. Implement account auditing and enforce the disabling of unused accounts (e.g.,
After no more than 30 days from the expiration of an account’s password.)

xxii. The application must support disabling of accounts and terminating sessions
when authorization ceases (e.g., Changes to role, employment status, business
process, etc.)

xxiii. Service accounts or accounts supporting connections to or from external
systems must have the least privilege possible

xxiv. Create an Access Control Policy to document an application's business rules,
data types and access authorization criteria and/or processes so that access can
be properly provisioned and controlled, including the identifying access
requirements for both the data and system resources

f. Cryptographic Practices:

i. All cryptographic functions used to protect secrets from the application user
must be implemented on a trusted system (e.g., The server)

ii. Protect master secrets from unauthorized access
iii. Cryptographic modules must fail securely
iv. All random numbers, random file names, random GUIDs, and random strings

ought to be generated using the cryptographic module’s approved random
number generator when these random values are intended to be un-guessable

v. Cryptographic modules used by the application should be compliant to FIPS 140-
2 or an equivalent standard. (See
http://csrc.nist.gov/groups/STM/cmvp/validation.html)

vi. Establish and utilize a policy and process for how cryptographic keys will be
managed

g. Error Handling and Logging:

i. Do not disclose sensitive information in error responses, including system
details, session identifiers or account information

ii. Use error handlers that do not display debugging or stack trace information
iii. Implement generic error messages and use custom error pages
iv. The application should handle application errors and not rely on the server

configuration
v. Properly free allocated memory when error conditions occur

vi. Error handling logic associated with security controls should deny access by
default

vii. All logging controls should be implemented on a trusted system (e.g., The
server)

viii. Logging controls should support both success and failure of specified security events
ix. Ensure logs contain important log event data

http://csrc.nist.gov/groups/STM/cmvp/validation.html

x. Ensure log entries that include untrusted data will not execute as code in the
intended log viewing interface or software

xi. Restrict access to logs to only authorized individuals
xii. Utilize a master routine for all logging operations

xiii. Do not store sensitive information in logs, including unnecessary system details,
session identifiers or passwords

xiv. Ensure that a mechanism exists to conduct log analysis
xv. Log all input validation failures

xvi. Log all authentication attempts, especially failures
xvii. Log all access control failures

xviii. Log all apparent tampering events, including unexpected changes to state data
xix. Log attempts to connect with invalid or expired session tokens
xx. Log all system exceptions

xxi. Log all administrative functions, including changes to the security configuration settings
xxii. Log all backend TLS connection failures

xxiii. Log cryptographic module failures
xxiv. Use a cryptographic hash function to validate log entry integrity

h. Data Protection:

i. Implement least privilege, restrict users to only the functionality, data and
system information that is required to perform their tasks

ii. Protect all cached or temporary copies of sensitive data stored on the server
from unauthorized access and purge those temporary working files a soon as
they are no longer required.

iii. Encrypt highly sensitive stored information, like authentication verification data,
even on the server side. Always use well vetted algorithms, see "Cryptographic
Practices" for additional guidance

iv. Protect server-side source-code from being downloaded by a user
v. Do not store passwords, connection strings or other sensitive information in

clear text or in any non-cryptographically secure manner on the client side,
including embedding in insecure formats like: MS view state, Adobe flash or
compiled code

vi. Remove comments in user accessible production code that may reveal backend
system or other sensitive information

vii. Remove unnecessary application and system documentation as this can reveal
useful information to attackers

viii. Do not include sensitive information in HTTP GET request parameters
ix. Disable auto complete features on forms expected to contain sensitive

information, including authentication
x. Disable client-side caching on pages containing sensitive information. Cache-

Control: no-store, may be used in conjunction with the HTTP header control
"Pragma: no-cache", which is less effective, but is HTTP/1.0 backward
compatible

xi. The application must support the removal of sensitive data when that data is no
longer required. (e.g. personal information or certain financial data)

xii. Implement appropriate access controls for sensitive data stored on the server,
including cached data, temporary files and data that should be accessible only
by specific system users

i. Communication Security:

i. Implement encryption for the transmission of all sensitive information. This
encryption includes TLS for protecting the connection and may be
supplemented by discrete encryption of sensitive files or non-HTTP based
connections

ii. TLS certificates are to be valid and have the correct domain name, not be
expired, and be installed with intermediate certificates when required

iii. Failed TLS connections do not fall back to an insecure connection
iv. Utilize TLS connections for all content requiring authenticated access and for all

other sensitive information
v. Utilize TLS for connections to external systems that involve sensitive

information or functions
vi. Utilize a single standard TLS implementation that is configured appropriately

vii. Specify character encodings for all connections
viii. Filter parameters containing sensitive information from the HTTP referrer, when

linking to external sites

j. System Configuration:
ix. Ensure servers, frameworks and system components are running the latest

approved version
x. Ensure servers, frameworks and system components have all patches issued for

the version in use
xi. Turn off directory listings

xii. Restrict the web server, process and service accounts to the least privileges
possible

xiii. When exceptions occur, fail securely
xiv. Remove all unnecessary functionality and files
xv. Remove test code or any functionality not intended for production, prior to

deployment
xvi. Prevent disclosure of your directory structure in the robots.txt file by placing

directories not intended for public indexing into an isolated parent directory.
Then "Disallow" that entire parent directory in the robots.txt file rather than
Disallowing each individual directory

xvii. Define which HTTP methods, Get or Post, the application will support and
whether it will be handled differently in different pages in the application

xviii. Disable unnecessary HTTP methods, such as WebDAV extensions. If an extended
HTTP method that supports file handling is required, utilize a well-vetted
authentication mechanism

xix. If the web server handles both HTTP 1.0 and 1.1, ensure that both are
configured in a similar manor or insure that you understand any difference that
may exist (e.g. handling of extended HTTP methods)

xx. Remove unnecessary information from HTTP response headers related to the
OS, web-server version and application frameworks

xxi. The security configuration store for the application should be able to be output
in human readable form to support auditing

xxii. Implement an asset management system and register system components and
software in it

xxiii. Isolate development environments from the production network and provide
access only to authorized development and test groups. Development
environments are often configured less securely than production environments
and attackers may use this difference to discover shared weaknesses or as an
avenue for exploitation

xxiv. Implement a software change control system to manage and record changes to the code
both in development and production

k. Database Security:

xxv. Use strongly typed parameterized queries
xxvi. Utilize input validation and output encoding and be sure to address meta

characters. If these fail, do not run the database command
xxvii. Ensure that variables are strongly typed

xxviii. The application ought to use the lowest possible level of privilege when
accessing the database

xxix. Use secure credentials for database access
xxx. Connection strings cannot be hard coded within the application. Connection

strings are to be stored in a separate configuration file on a trusted system and
they must be encrypted.

xxxi. Use stored procedures to abstract data access and allow for the removal of
permissions to the base tables in the database

xxxii. Close the connection as soon as possible
xxxiii. Remove or change all default database administrative passwords. Utilize strong

passwords/phrases or implement multi-factor authentication
xxxiv. Turn off all unnecessary database functionality (e.g., unnecessary stored

procedures or services, utility packages, install only the minimum set of features
and options required (surface area reduction))

xxxv. Remove unnecessary default vendor content (e.g., sample schemas)
xxxvi. Disable any default accounts that are not required to support business

requirements
xxxvii. The application connects to the database with different credentials for every

trust distinction (e.g., user, read-only user, guest, administrators)

l. File Management:
xxxviii. Do not pass user supplied data directly to any dynamic include function

xxxix. Require authentication before allowing a file to be uploaded
xl. Limit the type of files that can be uploaded to only those types that are needed

for business purposes
xli. Validate uploaded files are the expected type by checking file headers. Checking

for file type by extension alone is not sufficient
xlii. Do not save files in the same web context as the application. Files should either

go to the content server or in the database
xliii. Prevent or restrict the upload of any file that may be interpreted by the web

server.
xliv. Turn off execution privileges on file upload directories
xlv. Implement safe uploading in UNIX by mounting the targeted file directory as a

logical drive using the associated path or the chrooted environment
xlvi. When referencing existing files, use a white list of allowed file names and types.

Validate the value of the parameter being passed and if it does not match one
of the expected values, either reject it or use a hard-coded default file value for
the content instead

xlvii. Do not pass user supplied data into a dynamic redirect. If this redirection must
be allowed, then the redirect should accept only validated, relative path URLs

xlviii. Do not pass directory or file paths; use index values mapped to pre-defined list
of paths

xlix. Never send the absolute file path to the client
l. Ensure application files and resources are read-only

li. Scan user uploaded files for viruses and malware

m. Memory Management:
lii. Utilize input and output control for untrusted data

liii. Double check that the buffer is as large as specified
liv. When using functions that accept a number of bytes to copy, such as strncpy(),

be aware that if the destination buffer size is equal to the source buffer size, it
may not NULL-terminate the string

lv. Check buffer boundaries if calling the function in a loop and make sure there is
no danger of writing past the allocated space

lvi. Truncate all input strings to a reasonable length before passing them to the
copy and concatenation functions

lvii. Specifically, close resources, don’t rely on garbage collection. (e.g., connection
objects, file handles, etc.)

lviii. Use non-executable stacks when available
lix. Avoid the use of known vulnerable functions (e.g., printf, strcat, strcpy etc.)
lx. Properly free allocated memory upon the completion of functions and at all exit

points

n. General Coding Practices:

lxi. Use tested and approved managed code rather than creating new unmanaged
code for common tasks

lxii. Utilize task specific built-in APIs to conduct operating system tasks. Do not allow
the application to issue commands directly to the Operating System, especially
through the use of application-initiated command shells

lxiii. Use checksums or hashes to verify the integrity of interpreted code, libraries,
executables, and configuration files

lxiv. Utilize locking to prevent multiple simultaneous requests or use a
synchronization mechanism to prevent race conditions

lxv. Protect shared variables and resources from inappropriate concurrent access
lxvi. Explicitly initialize all your variables and other data stores, either during

declaration or just before the first usage
lxvii. In cases where the application must run with elevated privileges, raise privileges

as late as possible, and drop them as soon as possible
lxviii. Avoid calculation errors by understanding your programming language's

underlying representation and how it interacts with numeric calculation. Pay
close attention to byte size discrepancies, precision, signed/unsigned
distinctions, truncation, conversion and casting between types, "not-a-number"
calculations, and how the language handles numbers that are too large or too
small for its underlying representation

lxix. Do not pass user supplied data to any dynamic execution function
lxx. Restrict users from generating new code or altering existing code

lxxi. Review all secondary applications, third party code and libraries to determine
business necessity and validate safe functionality, as these can introduce new
vulnerabilities

lxxii. Implement safe updating. If the application will utilize automatic updates, then
use cryptographic signatures for your code and ensure your download clients
verify those signatures. Use encrypted channels to transfer the code from the
host server

	APPENDIX E
	Secure Coding Practices Policy
	a. Input Validation:
	b. Output Encoding:
	c. Authentication and Password Management:
	d. Session Management:
	e. Access Control:
	f. Cryptographic Practices:
	g. Error Handling and Logging:
	h. Data Protection:
	i. Communication Security:
	j. System Configuration:
	k. Database Security:
	l. File Management:
	m. Memory Management:
	n. General Coding Practices:

